Clusters and features from combinatorial stochastic processes

Tamara Broderick, Michael I. Jordan, Jim Pitman UC Berkeley

Clustering/Partition

Clustering/Partition

Clustering/Partition

Clustering/Partition

Latent feature allocation

Characterizations

- Exchangeable cluster distributions are characterized
-What about exchangeable feature distributions?

Exchangeable probability functions

Exchangeable probability functions

Exchangeable probability functions

Exchangeable probability functions

Exchangeable partition probability function (EPPF)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process

Example: Indian buffet process

Example: Indian buffet process

For $n=I, 2, \ldots, N$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=\operatorname{Poisson}\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=1,2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=1,2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=1,2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=\operatorname{Poisson}\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Example: Indian buffet process

For $n=I, 2, \ldots, N$
I. Data point n has an existing feature k that has already occurred $S_{n-1, k}$ times with probability $\frac{S_{n-1, k}}{\theta+n-1}$
2. Number of new features for data point n : $K_{n}^{+}=\operatorname{Poisson}\left(\gamma \frac{\theta}{\theta+n-1}\right)$

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

$$
=\frac{1}{K_{N}!}(\theta \gamma)^{K_{N}} \exp \left(-\theta \gamma \sum_{n=1}^{N}(\theta+n-1)^{-1}\right) \prod_{k=1}^{K_{N}} \frac{\Gamma\left(S_{N, k}\right) \Gamma\left(N-S_{N, k}+\theta\right)}{\Gamma(N+\theta)}
$$

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Example: Indian buffet process (IBP)

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Counterexample

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Counterexample

$$
\begin{aligned}
& \mathbb{P}(\text { row }=\square)=p_{1} \\
& \mathbb{P}(\text { row }=\square)=p_{2} \\
& \mathbb{P}(\text { row }=\square)=p_{3} \\
& \mathbb{P}(\text { row }=\square)=p_{4}
\end{aligned}
$$

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Counterexample

$$
\begin{aligned}
& \mathbb{P}(\text { row }=\square)=p_{1} \\
& \mathbb{P}(\text { row }=\square)=p_{2} \\
& \mathbb{P}(\text { row }=\square)=p_{3} \\
& \mathbb{P}(\text { row }=\square)=p_{4}
\end{aligned}
$$

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Counterexample

$$
\begin{aligned}
& \mathbb{P}(\text { row }=\square)=p_{1} \\
& \mathbb{P}(\text { row }=\square)=p_{2} \\
& \mathbb{P}(\text { row }=\square)=p_{3} \\
& \mathbb{P}(\text { row }=\square)=p_{4}
\end{aligned}
$$

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Counterexample

$$
\begin{aligned}
& \mathbb{P}(\text { row }=\square)=p_{1} \\
& \mathbb{P}(\text { row }=\square)=p_{2} \\
& \mathbb{P}(\text { row }=\square)=p_{3} \\
& \mathbb{P}(\text { row }=\square)=p_{4}
\end{aligned}
$$

Exchangeable probability functions

"Exchangeable feature probability function" (EFPF)?
Counterexample

$$
\begin{aligned}
& \mathbb{P}(\text { row }=\square)=p_{1} \\
& \mathbb{P}(\text { row }=\square)=p_{2} \\
& \mathbb{P}(\text { row }=\square)=p_{3} \\
& \mathbb{P}(\text { row }=\square)=p_{4}
\end{aligned}
$$

$$
\begin{gathered}
\mathbb{P}(\square) \neq \mathbb{P}(\square) \\
p_{1} p_{2} \neq p_{3} p_{4}
\end{gathered}
$$

Exchangeable probability functions

Exchangeable cluster distributions
= Cluster distributions with EPPFs
Exchangeable feature distributions

Feature distributions with EFPFs

Paintboxes

Exchangeable partition: Kingman paintbox

Paintboxes

[Broderick, Pitman, Jordan (submitted)]

Paintboxes

Exchangeable feature allocation: feature paintbox

Lizard feature
Sheep feature
[] Horse feature

Paintboxes

Exchangeable feature allocation: feature paintbox

Paintboxes

Exchangeable cluster distributions
= Cluster distributions with EPPFs

Exchangeable feature distributions

Feature distributions with EFPFs

Paintboxes

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions

Exchangeable feature distributions
= Feature paintbox allocations

Feature distributions with EFPFs

Paintboxes

Two feature example

$$
\begin{array}{|c:c:c|c}
\hline & & & \\
\hline & & & \text { Feature I } \\
& p_{3} & p_{2} & p_{4} \\
& \mathbb{P}(\text { row }=\square)=p_{1} \\
\mathbb{P}(\text { row }=\square)=p_{2} \\
\mathbb{P}(\text { row }=\square)=p_{3} \\
\mathbb{P}(\text { row }=\square)=p_{4}
\end{array}
$$

Paintboxes

Indian buffet process: beta feature frequencies

Paintboxes

Indian buffet process: beta feature frequencies

For $m=\mathbf{I}, 2, \ldots$
I. Draw $K_{m}^{+}=$Poisson $\left(\gamma \frac{\theta}{\theta+m-1}\right)$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=I, 2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson
${ }^{m} \quad(\hat{\theta}+m-1)$
Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=I, 2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=I, 2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

For $m=1,2, \ldots$
I. Draw $K_{m}^{+}=$Poisson

Set $K_{m}=\sum_{j=1}^{m} K_{m}^{+}$
2. For $\mathrm{k}=K_{m-1}, \ldots, K_{m}$

Draw a frequency of size

$$
q_{k} \sim \operatorname{Beta}(1, \theta+m-1)
$$

Paintboxes

Indian buffet process: beta feature frequencies

Paintboxes

Indian buffet process: beta feature frequencies

Paintboxes

Indian buffet process: beta feature frequencies

\square

Paintboxes

Indian buffet process: beta feature frequencies

Paintboxes

Indian buffet process: beta feature frequencies

Paintboxes

Indian buffet process: beta feature frequencies

Paintboxes

Paintboxes

"Frequency models"
[Broderick, Pitman, Jordan (submitted)]

Paintboxes

Two feature example

$$
\begin{array}{|c|c:c|c|}
\hline \vdots & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
& p_{1} & p_{3} & p_{2}
\end{array}
$$

Paintboxes

Two feature example Not a frequency model

$$
\begin{array}{|c|c:c|c|}
\hline \vdots & & \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
& p_{1} & p_{3} & p_{2}
\end{array}
$$

Paintboxes

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions

Exchangeable feature distributions
= Feature paintbox allocations

Feature distributions with EFPFs

Paintboxes

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions

Exchangeable feature distributions
= Feature paintbox allocations

Frequency models
[Broderick, Pitman, Jordan (submitted)]

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

Frequency models: EFPFs?

$$
\prod_{k=1}^{K} q_{i_{k}}^{S_{N, k}}\left(1-q_{i_{k}}\right)^{N-S_{N, k}}
$$

Frequency models: EFPFs?

$$
\begin{aligned}
& \prod_{k=1}^{K} q_{i_{k}}^{S_{N, k}}\left(1-q_{i_{k}}\right)^{N-S_{N, k}} \\
& \prod_{j \notin\left\{i_{k}\right\}_{k=1}^{K}}\left(1-q_{j}\right)^{N}
\end{aligned}
$$

Frequency models: EFPFs?

$$
\begin{aligned}
& =\mathbb{E}\left[\sum_{\text {distinct } i_{k}} \frac{1}{K!} \prod_{k=1}^{K} q_{i_{k}}^{S_{N, k}}\left(1-q_{i_{k}}\right)^{N-S_{N, k}}\right. \\
& \text { - } \left.\prod\left(1-q_{j}\right)^{N}\right] \\
& j \notin\left\{i_{k}\right\}_{k=1}^{K}
\end{aligned}
$$

Frequency models: EFPFs?

$=\mathbb{E}\left[\sum_{\text {distinct } i_{k}} \frac{1}{K!} \prod_{k=1}^{K} q_{i_{k}}^{S_{N, k}}\left(1-q_{i_{k}}\right)^{N-S_{N, k}}\right.$

$$
\left.\prod_{j \notin\left\{i_{k}\right\}_{k=1}^{K}}\left(1-q_{j}\right)^{N}\right]
$$

Frequency models: EFPFs?

)

$$
=\mathbb{E}\left[\sum_{\text {distinct } i_{k}} \frac{1}{K!} \prod_{k=1}^{K} q_{i_{k}}^{S_{N, k}}\left(1-q_{i_{k}}\right)^{N-S_{N, k}} \quad \begin{array}{c}
\text { Size of } k \text { th } \\
\text { feature }
\end{array}\right.
$$

$$
\left.\prod_{\left.j \notin i_{k}\right\}_{k=1}^{K}}\left(1-q_{j}\right)^{N}\right]
$$

Frequency models: EFPFs?

$$
\left.j \not \prod_{\left\{i_{k}\right\}_{k=1}^{K}}\left(1-q_{j}\right)^{N}\right]
$$

Frequency models: EFPFs?

$$
\left.j \not \prod_{\left\{\neq\left\{i_{k}\right\}_{k=1}^{K}\right.}\left(1-q_{j}\right)^{N}\right]
$$

Frequency models: EFPFs?

$$
\left.\prod_{j \notin\left\{i_{k}\right\}_{k=1}^{K}}\left(1-q_{j}\right)^{N}\right]=p\left(N ; S_{N, 1}, S_{N, 2}, \ldots, S_{N, K}\right)
$$

Frequency models: EFPFs?

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

Frequency models

Frequency models: EFPFs?

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

Feature distributions with EFPFs

Distributions with EFPFs: frequencies?

Distributions with EFPFs: frequencies?

Feature allocation

Distributions with EFPFs: frequencies?

Feature allocation

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Want to show:

$$
\begin{aligned}
& \exists q_{1} \\
& \exists q_{2}
\end{aligned}
$$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\mathrm{K}=2 \text { for all } \mathrm{N}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Want to show:
\square
$\exists q_{2} \square$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\mathrm{K}=2 \text { for all } \mathrm{N}
$$

Assume EFPF

$$
p\left(N ; S_{N, 1}, S_{N, 2}\right)
$$

Want to show: e.g. $\mathbb{P}\left(\right.$ row $\left.=\square \mid q_{1: 2}\right)$
\square
\square

Distributions with EFPFs: frequencies?

Feature allocation

$$
\mathrm{K}=2 \text { for all } \mathrm{N}
$$

Assume EFPF

$$
p\left(N ; S_{N, 1}, S_{N, 2}\right)
$$

Want to show:

$$
\text { e.g. } \mathbb{P}\left(\text { row }=\square \mid q_{1: 2}\right)
$$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\mathrm{K}=2 \text { for all } \mathrm{N}
$$

Assume EFPF

$$
p\left(N ; S_{N, 1}, S_{N, 2}\right)
$$

Want to show:

$$
\text { e.g. } \mathbb{P}\left(\text { row }=\square \mid q_{1: 2}\right)=q_{1}\left(1-q_{2}\right)
$$

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

Feature paintbox

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$
$\mathbb{P}(4 ; 2,2)$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$
$\mathbb{P}(4 ; 2,2)=\mathbb{P}\binom{\square}{\square}=\mathbb{P}\binom{\square}{\square}=\mathbb{P}\binom{\square}{\square}$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
\left.\begin{array}{rl}
\mathbb{P}(4 ; 2,2)=\mathbb{P}(&)=\mathbb{P}(\square)=\mathbb{P}(
\end{array}\right)
$$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
\begin{aligned}
\mathbb{P}(4 ; 2,2)= & \mathbb{P}(\\
& (\square)=\mathbb{P}\left(p_{1}^{2} p_{2}^{2}\right]=\mathbb{E}\left[p_{3}^{2} p_{4}^{2}\right]=\mathbb{E}\left[p_{1} p_{2} p_{3} p_{4}\right] \\
& \mathbb{E}\left[\left(p_{1} p_{2}-p_{3} p_{4}\right)^{2}\right]=0 \\
& p_{1} p_{2} \stackrel{\text { a.s. }}{=} p_{3} p_{4}
\end{aligned}
$$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
p_{1} p_{2} \stackrel{\text { a.s. }}{=} p_{3} p_{4}
$$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
p_{1} p_{2} \stackrel{\text { a.s. }}{=} p_{3} p_{4}
$$

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{4}
\end{array}
$$

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
p_{1} p_{2} \stackrel{a . s .}{=} p_{3} p_{4}
$$

$$
p_{1} \stackrel{a . s .}{=}\left(p_{1}+p_{3}\right)\left(1-\left[p_{2}+p_{3}\right]\right)
$$

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
p_{1} p_{2} \stackrel{a . s .}{=} p_{3} p_{4}
$$

$$
p_{1} \stackrel{a . s .}{=} q_{1}\left(1-\left[p_{2}+p_{3}\right]\right)
$$

Distributions with EFPFs: frequencies?

Feature allocation

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
p_{1} p_{2} \stackrel{a . s .}{=} p_{3} p_{4}
$$

$$
p_{1} \stackrel{a . s .}{=} q_{1}\left(1-\left[p_{2}+p_{3}\right]\right)
$$

Distributions with EFPFs: frequencies?

Feature allocation

$$
\begin{array}{ll}
\mathbb{P}(\text { row }=\square & \left.\mid p_{1: 4}\right)=p_{1} \\
\mathbb{P}(\text { row }=\square \square & \left.p_{1: 4}\right)=p_{2} \\
\mathbb{P}(\text { row }=\square \square & \left.\mid p_{1: 4}\right)=p_{3} \\
\mathbb{P}(\text { row }=\square & \left.p_{1: 4}\right)=p_{4}
\end{array}
$$

Assume EFPF
$p\left(N ; S_{N, 1}, S_{N, 2}\right)$

$$
p_{1} p_{2} \stackrel{\text { a.s. }}{=} p_{3} p_{4}
$$

$$
p_{1} \stackrel{a . s .}{=} q_{1}\left(1-q_{2}\right)
$$

Distributions with EFPFs: frequencies?

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions

Exchangeable feature distributions
= Feature paintbox allocations

Feature distributions with EFPFs

Distributions with EFPFs: frequencies?

Exchangeable cluster distributions
= Cluster distributions with EPPFs
= Kingman paintbox partitions
Exchangeable feature distributions
= Feature paintbox allocations

Feature distributions with EFPFs = Frequency models

Conclusions

Conclusions

- Feature paintbox: characterization of exchangeable feature models

Conclusions

- Feature paintbox: characterization of exchangeable feature models

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in
- Other combinatorial structures

Exchangeable features; feature paintbox

Normalized completely

Conclusions

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in
- Other combinatorial structures

References

T. Broderick, M. I. Jordan, and J. Pitman. Clusters and features from combinatorial stochastic processes. Arxiv preprint arXiv:1206.5862, 2012.
T. Broderick, J. Pitman, and M. I. Jordan. Feature allocations, probability functions, and paintboxes. Submitted.
T. Broderick, L. Mackey, J. Paisley, and M. I. Jordan. Combinatorial clustering and the beta negative binomial process. Arxiv preprint arXiv:1111.1802, 2011.
T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Y. Weiss, B. Scholkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 475-482. MIT Press, Cambridge, MA, 2006.
N. L. Hjort. Nonparametric bayes estimators based on beta processes in models for life history data. Annals of Statistics, 18(3):1259-1294, 1990.
Y. Kim. Nonparametric Bayesian estimators for counting processes. Annals of Statistics, 27(2):562-588, 1999.
J. F. C. Kingman. The representation of partition structures. Fournal of the London Mathematical Society, 2(2):374, 1978.
J. Pitman. Exchangeable and partially exchangeable random partitions. Probability Theory and Related Fields, 102(2):145-158, 1995.
R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In Proceedings of the International Conference on Artificial Intelligence and Statistics, volume 11, 2007.
M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson factor analysis.

