

Clusters and features from combinatorial stochastic processes

Tamara Broderick, Michael I. Jordan, Jim Pitman UC Berkeley

"clusters", "classes", "blocks (of a partition)"

"clusters", "classes", "blocks (of a partition)"

Latent feature allocation

Characterizations

- Exchangeable cluster distributions are characterized
- What about exchangeable feature distributions?

Exchangeable partition probability function (EPPF)

"Exchangeable feature probability function" (EFPF)?

7

7

7

7

For n = 1, 2, ..., NI. Data point *n* has an existing feature *k* that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

For n = 1, 2, ..., NI. Data point n has an existing feature k that has already occurred $S_{n-1,k}$ times with probability $\frac{S_{n-1,k}}{\theta + n - 1}$ 2. Number of new features for data point n: $K_n^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + n - 1}\right)$

"Exchangeable feature probability function" (EFPF)?

"Exchangeable feature probability function" (EFPF)?

"Exchangeable feature probability function" (EFPF)?

$$= \frac{1}{K_N!} (\theta \gamma)^{K_N} \exp\left(-\theta \gamma \sum_{n=1}^N (\theta + n - 1)^{-1}\right) \prod_{k=1}^{K_N} \frac{\Gamma(S_{N,k}) \Gamma(N - S_{N,k} + \theta)}{\Gamma(N + \theta)}$$

"Exchangeable feature probability function" (EFPF)?

"Exchangeable feature probability function" (EFPF)?

"Exchangeable feature probability function" (EFPF)?

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

[Broderick, Jordan, Pitman 2012]

"Exchangeable feature probability function" (EFPF)?

Example: Indian buffet process (IBP)

[Broderick, Jordan, Pitman 2012]

"Exchangeable feature probability function" (EFPF)?

Counterexample

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

[Broderick, Jordan, Pitman 2012]

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

"Exchangeable feature probability function" (EFPF)?

Counterexample

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

$$\mathbb{P}(\square) \neq \mathbb{P}(\square)$$

$$p_1 p_2 \neq p_3 p_4$$

Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox

Exchangeable partition: Kingman paintbox

12

Exchangeable cluster distributions = Cluster distributions with EPPFs

Feature distributions with EFPFs

Exchangeable feature distributions

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

Feature distributions with EFPFs

[Broderick, Pitman, Jordan (submitted)]

Two feature example

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

Indian buffet process: beta feature frequencies

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_m^+$
2. For $k = K_{m-1}, \dots, K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_m^+$
2. For $k = K_{m-1}, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

0

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set $K_m = \sum K_m^+$ j=1**2.** For $k = K_{m-1}, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

q₂

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set $K_m = \sum K_m^+$ j=1**2.** For $k = K_{m-1}, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

q₂

q₃

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set $K_m = \sum K_m^+$ j=1**2.** For $k = K_{m-1}, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$ **q**₂

[Thibaux, Jordan 2007]

q₃

q₄

q5

q₆

Indian buffet process: beta feature frequencies For m = 1, 2, ...I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$ ٩ı Set $K_m = \sum K_m^+$ j=1**2.** For $k = K_{m-1}, \ldots, K_m$ Draw a frequency of size $q_k \sim \text{Beta}(1, \theta + m - 1)$ **q**₂ **q**₃

[Thibaux, Jordan 2007]

q₆

q₄

q₅

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_m^+$
2. For $k = K_{m-1}, \dots, K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

q₆

q₄

()

q5

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

I. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_m^+$
2. For $k = K_{m-1}, \dots, K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

[Thibaux, Jordan 2007]

q₆

q₄

0

q5

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_m^+$
2. For $k = K_{m-1}, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

q₄

0

q5

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

For
$$m = 1, 2, ...$$

1. Draw $K_m^+ = \text{Poisson}\left(\gamma \frac{\theta}{\theta + m - 1}\right)$
Set $K_m = \sum_{j=1}^m K_m^+$
2. For $k = K_{m-1}, ..., K_m$
Draw a frequency of size
 $q_k \sim \text{Beta}(1, \theta + m - 1)$

٩ı **q**₂ **q**₃ **q**₆ **q**₄ **q**5 0

[Thibaux, Jordan 2007]

Indian buffet process: beta feature frequencies

•

19

"Frequency models"

[Broderick, Pitman, Jordan (submitted)]

Two feature example

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

Two feature example Not a frequency model

$$\mathbb{P}(\text{row} = \blacksquare) = p_1$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_2$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_3$$
$$\mathbb{P}(\text{row} = \blacksquare) = p_4$$

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

[Broderick, Pitman, Jordan (submitted)]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

• IBP Two-feature example

Exchangeable feature distributions

= Feature paintbox allocations

Frequency models

[Broderick, Pitman, Jordan (submitted)]

٩ı $\underline{q_2}$ q_3 **q**₆ **q**₄ **q**5 . 0

[Broderick, Pitman, Jordan (submitted)]

23

[Broderick, Pitman, Jordan (submitted)]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

PFs Exchangeable feature distributions = Feature paintbox allocations

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

Two-feature example Frequency models

Feature distributions with EFPFs

Exchangeable feature distributions

= Feature paintbox allocations

[Broderick, Pitman, Jordan (submitted)]

Distributions with EFPFs: frequencies?

Feature allocation

Feature allocation

Assume EFPF $p(N; S_{N,1}, S_{N,2})$

Want to show:

 $\exists q_1 \\ \exists q_2$

Feature allocation

Assume EFPF $p(N; S_{N,1}, S_{N,2})$

Want to show:

Feature allocation

Feature allocation

Feature allocation

Feature allocation

Feature allocation

$\mathbb{P}(\mathrm{row} =$	$ p_{1:4}) = p_1$
$\mathbb{P}(\mathrm{row} =$	$ p_{1:4}) = p_2$
$\mathbb{P}(\mathrm{row} =$	$ p_{1:4}) = p_3$
$\mathbb{P}(\mathrm{row} =$	$ p_{1:4}) = p_4$

Feature allocation

Feature allocation

Feature allocation

$$\mathbb{P}(\text{row} = |p_{1:4}) = p_1$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_2$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_3$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_4$$

Assume EFPF $p(N; S_{N,1}, S_{N,2})$

 $\mathbb{P}(4;2,2)$

Feature allocation

$$p_1p_2 \stackrel{a.s.}{=} p_3p_4$$

$$\mathbb{P}(\text{row} = |p_{1:4}) = p_1$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_2$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_3$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_4$$

Feature allocation

$$\mathbb{P}(\text{row} = |p_{1:4}) = p_1$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_2$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_3$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_4$$

N
Assume EFPF
$$p(N; S_{N,1}, S_{N,2})$$

$$\mathbb{P}(\text{row} = |p_{1:4}) = p_1$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_2$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_3$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_4$$

$$p_{1}p_{2} \stackrel{a.s.}{=} p_{3}p_{4}$$
algebra
$$p_{1} \stackrel{a.s.}{=} (p_{1} + p_{3})(1 - [p_{2} + p_{3}])$$

Feature allocation

$$\mathbb{P}(\text{row} = |p_{1:4}) = p_1$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_2$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_3$$
$$\mathbb{P}(\text{row} = |p_{1:4}) = p_4$$

Feature allocation

Feature allocation

Feature allocation

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

Feature distributions with EFPFs

[Broderick, Pitman, Jordan (submitted)]

Exchangeable cluster distributions = Cluster distributions with EPPFs = Kingman paintbox partitions

= Kingman paintbox partitions

Exchangeable feature distributions = Feature paintbox allocations

[Broderick, Pitman, Jordan (submitted)]

• Feature paintbox: characterization of exchangeable feature models

• Feature paintbox: characterization of exchangeable feature models

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Limits of clustering characterizations in feature case?

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in
- Other combinatorial structures

- Feature paintbox: characterization of exchangeable feature models
- Characterization of alternative correlation structure
- Remaining connections to fill in
- Other combinatorial structures

References

T. Broderick, M. I. Jordan, and J. Pitman. Clusters and features from combinatorial stochastic processes. *Arxiv* preprint arXiv:1206.5862, 2012.

T. Broderick, J. Pitman, and M. I. Jordan. Feature allocations, probability functions, and paintboxes. Submitted.

T. Broderick, L. Mackey, J. Paisley, and M. I. Jordan. Combinatorial clustering and the beta negative binomial process. *Arxiv preprint arXiv:1111.1802*, 2011.

T. Griffiths and Z. Ghahramani. Infinite latent feature models and the Indian buffet process. In Y. Weiss, B. Scholkopf, and J. Platt, editors, *Advances in Neural Information Processing Systems 18*, pages 475–482. MIT Press, Cambridge, MA, 2006.

N. L. Hjort. Nonparametric bayes estimators based on beta processes in models for life history data. Annals of Statistics, 18(3):1259–1294, 1990.

Y. Kim. Nonparametric Bayesian estimators for counting processes. Annals of Statistics, 27(2):562–588, 1999.

J. F. C. Kingman. The representation of partition structures. *Journal of the London Mathematical Society*, 2(2):374, 1978.

J. Pitman. Exchangeable and partially exchangeable random partitions. *Probability Theory and Related Fields*, 102(2):145–158, 1995.

R. Thibaux and M. I. Jordan. Hierarchical beta processes and the Indian buffet process. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, volume 11, 2007.

M. Zhou, L. Hannah, D. Dunson, and L. Carin. Beta-negative binomial process and Poisson factor analysis. In *Proceedings of the International Conference on Artificial Intelligence and Statistics*, volume 15, 2012.