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• Exchangeable
• Finite # of features 
per data point
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• Exchangeable cluster distributions are characterized
• What about exchangeable feature distributions?



Exchangeable probability functions

5

P( ) = p (NN,1, . . . , NN,K)

1
2

N

2 K...
...

1



Exchangeable probability functions

5

P(

1
2

N

2 K...
...

1

) = p (SN,1, . . . , SN,K)



Exchangeable probability functions

5

P(

1
2

N

2 K...
...

1
Size of Kth

cluster

) = p (SN,1, . . . , SN,K)



Exchangeable probability functions

5

P(

Exchangeable partition probability function (EPPF)

1
2

N

1 2 K...
...

[Pitman 1995]

) = p (SN,1, . . . , SN,K)



Exchangeable probability functions

6

“Exchangeable feature probability function” (EFPF)?
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